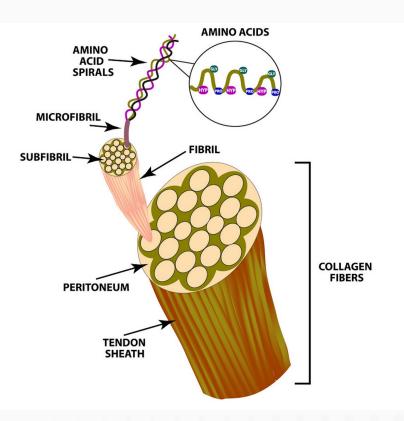


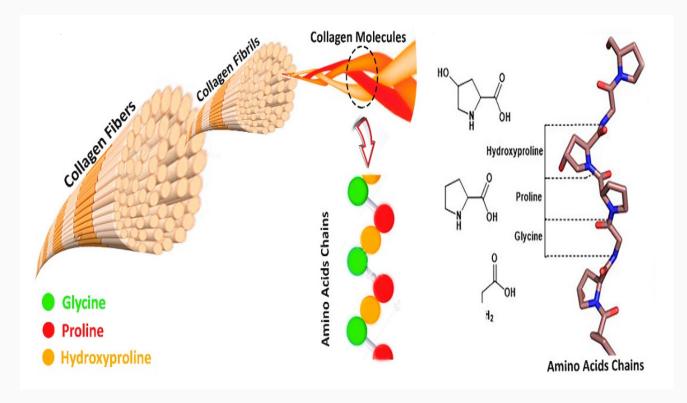
EXTRACTION OF COLLAGEN BIOACTIVE INGREDIENTS FROM JELLYFISH FOR COSMECEUTICAL APPLICATION


innovative • entrepreneurial • global

Video on collagen for skin

Collagen Supplement for Skin

WHAT IS COLAGEN?


- Collagen is the most abundant component of the extracellular matrix.
- Collagen consists of three α-chains that wind each other forming a collagen triple helix.
- These building blocks combine to form collagen fibrils.
- The amino acid sequence shows every third residue is glycine (Gly), which results in a Gly-X-Y repeating sequence where X is often proline (Pro) and Y is often hydroxyproline (Hyp)

COLLAGEN

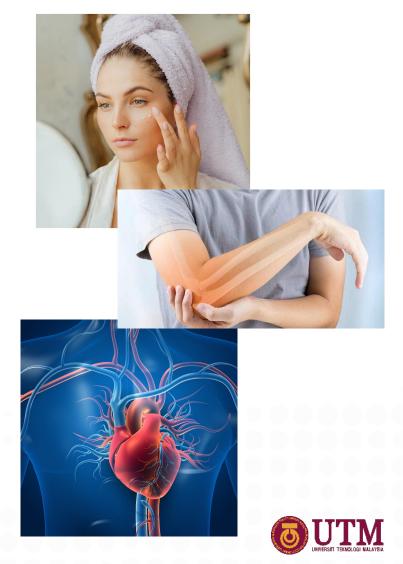
- Collagen is a protein that offers many positive benefits to our bodies. It has different types and each of those benefit our hair, skin, nails and bone.
- The most common types of collagen include type I, II and III.
- Types I and II are the most abundant proteins in all vertebrates compare to Type II collagen.
- However, Type II collagen also offer many benefits such as promotes joint and cartilage, and it is essential to supplement in our diet.

TYPES OF COLLAGEN

There are 28 types of collagen

Variation may be occurred due to :

1. Differences in the assembly of basic polypeptide chains


2. Different lengths of the helix

3. Various interruptions in the helix

4. Differences in the terminations of the helical domains

THE MOST COMMON TYPES OF COLLAGEN ARE :

Types of Collagen	Source	Major Roles/Functions
Ι	 Fish Bovine, Egg Bone broth 	 Supports youthful looking skin
II	Bone brothChicken	 Helps builds & maintain gut lining. Supports joints & digestive health. Promotes immune function
III	FishBovineEgg	 Supports skin & bone health Part of arterial walls & important for heart health

The benefits of different type of collagen

TYPE I COLLAGEN

Up to 90% of your body's collage is type I collagen. (1) Type I collagen fibers can be found in the skin, bones, blood vessel walls, connective tissue and cartilage.

BENEFITS

BEST SOURCES

- May aid in wound healing and blood clotting. (2)
- Reduces the prevalence of cellulite, especially in women. (3)
- Helps minimize wrinkles and improve skin quality. (4)

- Fish collagen (or marine collagen in general)
- Egg whites (5)
- Bovine collagen peptides
- Protein-rich foods, like fish fish and beef
- Bone broth

TYPE II COLLAGEN

Found in more elastic cartilage than type I, type II is known for promoting joint health. Type II also has the most efficient absorption after oral ingestion. (6)

BENEFITS

 Promotes joint health and possible relieves symptoms of arthritis. (7, 8)

BEST SOURCES

- Bone broth
- Chicken cartilage
- Protein-rich foods, like chicken
- Multi-collagen foods, protein powder

Reference: https://www.humann.com/nutrition/different-types-ofcollagen/#section3

The benefits of different type of collagen

TYPE III COLLAGEN

Type III collagen provides and improves the structure of muscles, as well as organs and blood vessels.

BENEFITS

BEST SOURCES

- May aid in intestinal health (9)
- May support healthy blood clotting (10, 11)
- Aids muscle growth (12)

- Bovine collagen peptides
- Protein-rich foods, like beef and fish
- Bone broth
- Collagen protein powder

TYPE IV COLLAGEN

This less common type of collagen aids in filtration of the kidneys and other organs.

BENEFITS

Supports multiple layers

May also aid in wound

healing and digestion (13)

of skin health

BEST SOURCES

- Egg whites
 - Other protein-rich foods
 - Type IV is very difficult to find in supplement form

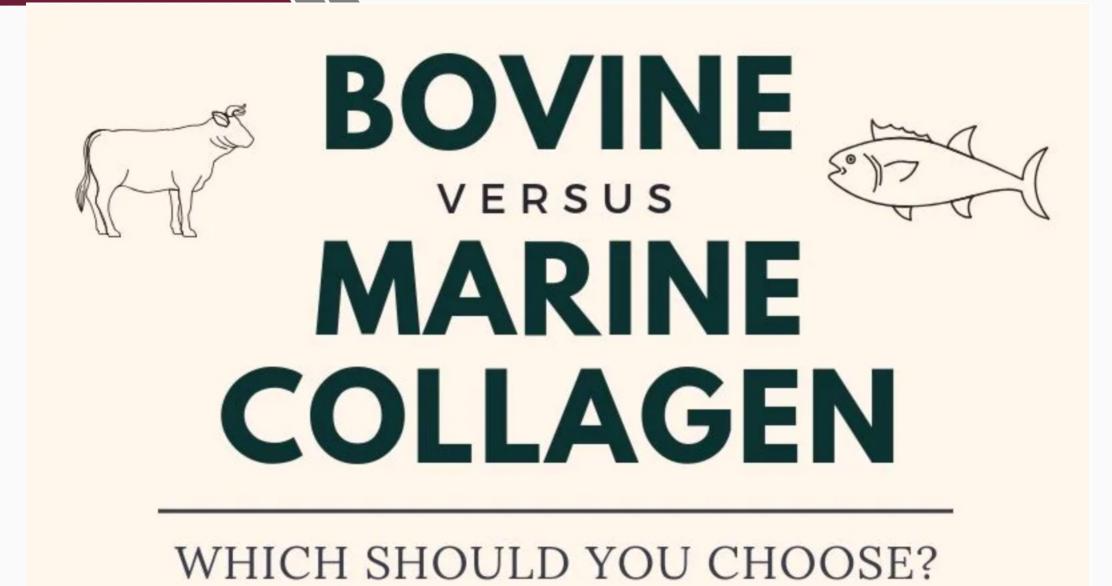
Reference: https://www.humann.com/nutrition/different-types-ofcollagen/#section3

Main collagen source in nature

The shift towards marine sources

SOURCE OF COLLAGEN

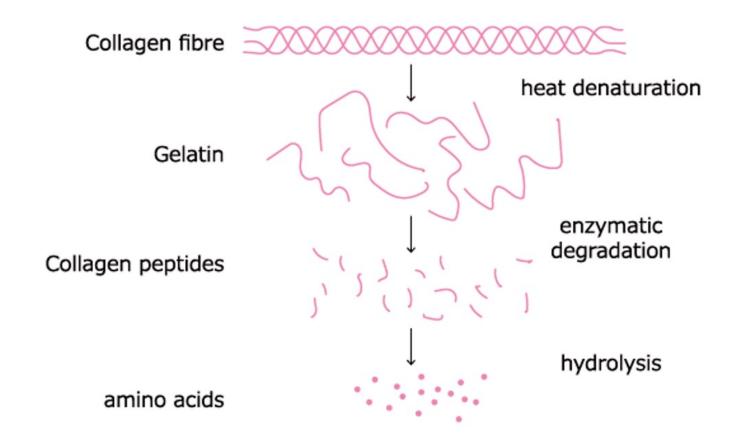
- Over the years, bovine and porcine have been used as common source of collagen
- However, bovine and porcine collagen poses the risk of transmitting disease such as spongiform encephalopathy (BSE), transmissible spongiform encephalopathy (TSE) and food and mouth disease (FMD) which limited their use.
- Besides, the usage of bovine and porcine collagen is related with cultural and religious considerations (for Muslims, Jews and Hindus)



MARINE

WHAT IT IS

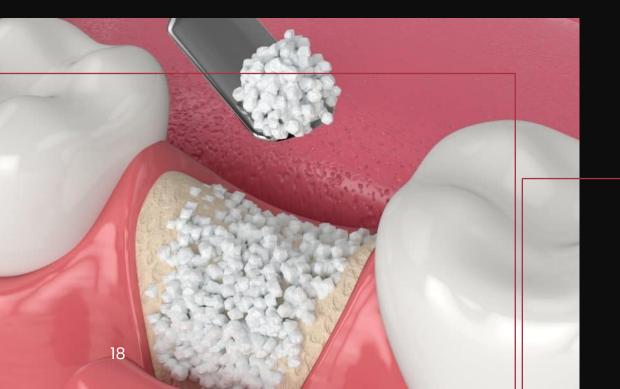
Bovine collagen is a flavorless powder made from cow hides. It contains mostly Type I and III collagen and is a rich source of amino acids. Marine collagen is a flavorless powder made from fish skin and scales. It contains mostly Type I collagen and due to it's smaller size, is slightly more bioavailable.


BENEFITS

Jellyfish for Cosmetics

Industry	Advantages	Bioactive compound	Jellyfish	Reference
	-antioxidants	high content of hydrophobic amino acids	Ribbon Jellyfish (Chrysaora sp.)	(Barzideh, Latiff, Gan, Abedin, & Alias, 2014)
	-antioxidants	Gelatin Polypeptides		(Yongliang Zhuang, Sun, Zhao, Hou, & Li, 2010)
	-antioxidants	collagen peptide		(Yongliang Zhuang et al., 2009)
	skin photo-protection from Ultraviolet radiation (protect skin lipid and collagen from the UV radiation damages)	Collagen & collagen hydrolysate		(Fan, Zhuang, & Li, 2013; Y. Zhuang, Hou, Zhao, Zhang, & Li, 2009)
	-	collagen	Rhopilema asamushi	(Nagai et al., 2000)
Cosmeceutical	-		Cyanea nozakii Kishinouye	(Zhang, Duan, Huang, Song, & Regenstein, 2014)
	-antioxidant	ω-6 polyupsaturated	Aurelia sp.1, Cotylorhiza tuberculata and Rhizostoma pulmo	(Leone, Lecci, Durante, Meli, & Piraino, 2015)
	-moisturizing	filaggrin, hyaluronan synthase-3 (HAS-3), aquaporin-3 (AQP- 3) and desmocollin (DSC)	Nemopilema nomurai	(Kim, Baek, Kim, Choi, & Lee, 2016)
	-for burn wound dressing	Colloidal collagen	-	US Patent 2014
	-would not require introduction of cross-linking agents.			

COLLAGEN, GELATIN AND COLLAGEN PEPTIDE

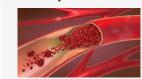

- - -

DIFFERENCE BETWEEN COLLAGEN, GELATIN, AND COLLAGEN PEPTIDE

GRADE	FORM	SOLUBILITY	ABSORPTION & DIGESTIBILITY	APPLICATION SAMPLE	MOLECULAR WEIGHT
Collagen		Insoluble	None	Medical materials, collagen casing, nutritional supplements	> 300, 000 Da
Gelatin		Medium	Medium	Gelatin desserts, confectionery	2, 000 – 200, 000 Da
Collagen Peptide		High	High	Dietary supplements, functional foods	300 – 8, 000 Da

Use of Collagen

- Bone grafts
- Tissue regeneration
- Cosmetic
- Wound care
- Reconstructive surgical uses

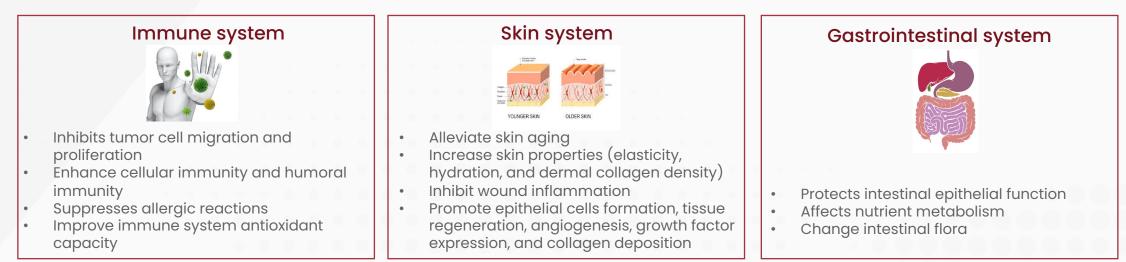


HEALTHY AND FUNCTIONAL OF GELATIN

- Provides unique texture and mouthfeel in food products and can help to reduce fat and sugar
- Widely used in pharmaceutical products such as capsules, gelatins helps to protect the ingredient of the product
- Melts at body temperature and is fully digestible
- Extend the self life of products
- It has ability to gel, thicken, bind, foam and form layers

Cardiovascular system

- Reduces vascular pressure
- Reduces blood glucose, triglyceride and cholesterol
- Regulate insulin secretion and antioxidant enzyme activity
- Promote fat metabolism and reduce fat tissue inflammation


- Relieves osteoporosis, increase bone density and bone strength
- Improve osteoarthritis, alleviate joint inflammation
- Improve body composition and local muscle strength

Nervous system

- Relieve age-related learning and memory deficits
- Change brain structure and antidepressant
- Prevent cognitive function, anxiety-like behavior and stress response defects

THE POTENTIAL BENEFITS OF COLLAGEN PEPTIDE

Jeimish. The <u>offusion of the subscription of the subscript</u> colcen

RESEARCH OBJECTIVES

01. To collect and study the literature on the extraction method of collagen bioactive ingredient from jellyfish.

02. To screen the best and suitable extraction method of collagen bioactive ingredient from jellyfish.

04. To characterize the collagen bioactive ingredient from jellyfish

03. To optimize the extraction method of collagen bioactive ingredient from jellyfish

NOVELTY OF THE STUDY

 \rightarrow

2

Development of extraction process of collagen bioactive ingredient from local jellyfish Development of extract containing high collagen bioactive ingredient content from local jellyfish

COLLAGEN PRESERVING METHOD

10ml low pH preservatives

STRUCTURAL ANALYSIS

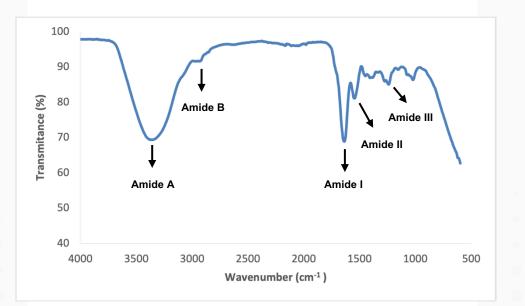


Figure 1 The FTIR spectra of collagen jellyfish

- There are five important bands observed in collagen spectra which are Amide A, Amide B, Amide I, Amide II and Amide III.
- Based on the spectra, it was confirmed the structural of collagen from jellyfish

	Wavenumber (cm ⁻¹)	Assignments
Amide A	3375	N-H stretching
Amide B	2951	CH_2 and NH_3^+
Amide I	1647	C=O stretching , N=H bending
Amide II	1557	N-H bending , C-N stretching
Amide III	1251	C-N stretching , N-H deformation

FTIR SPECTRUM OF COLLAGEN FROM JELLYFISH RHOPILEMA ESCULENTUM

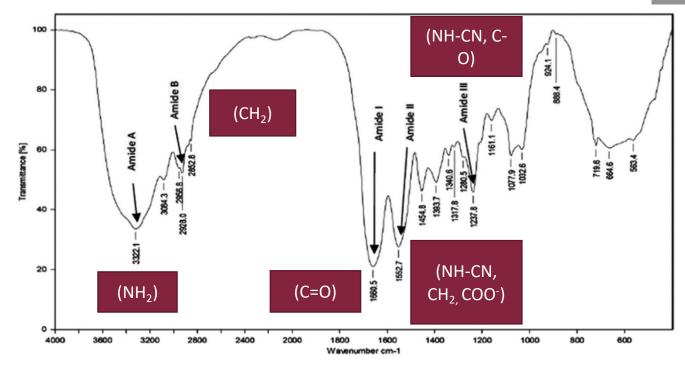
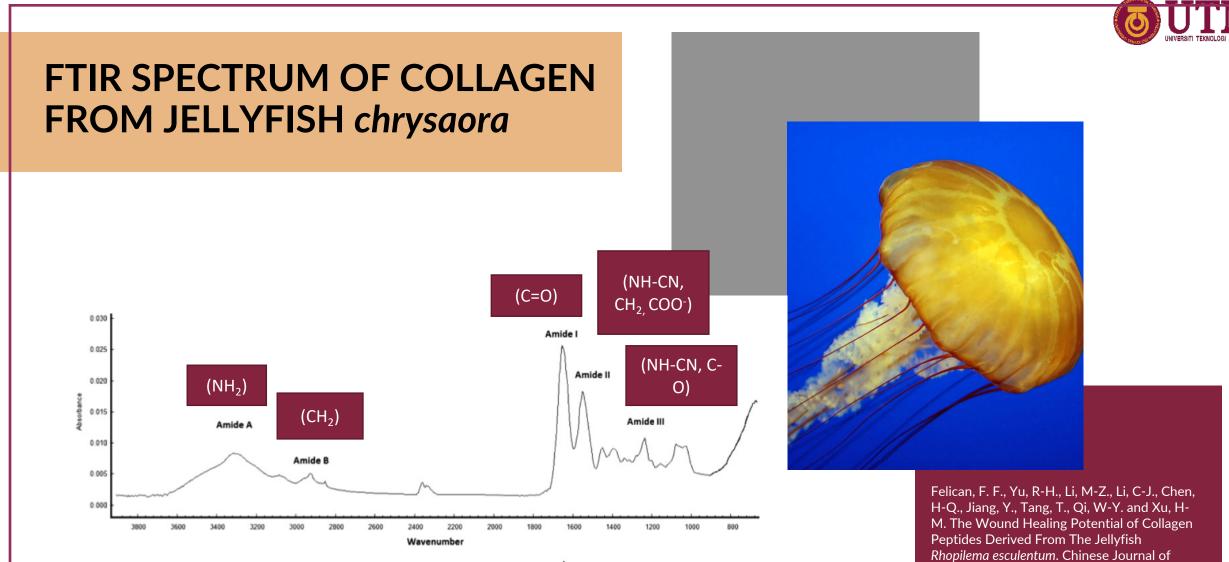
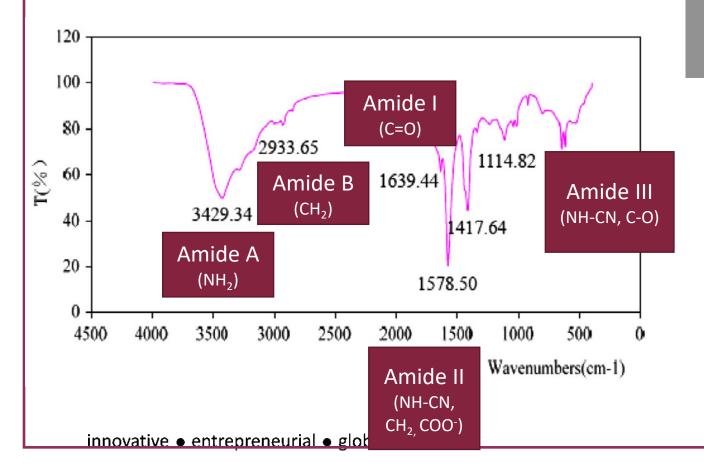



Fig. 4. Fourier transform infrared spectrum of collagen from the jellyfish Rhopilema esculentum.

Barzideh, Z., Latiff, A. A., Gan, C-Y., Benjakul, S. and Karim, A. A. Isolation and Characterization of collagen from the ribbon jellyfish (*Crysaora sp.*). International Journal of Food Science & Technology, 2013.


innovative e entrepreneurial global

Traumatology, 22, 12-20.

FTIR SPECTRUM OF COLLAGEN FROM JELLYFISH CYANEA NOZAKII KISHINOUYE

Zhang, J., Duan, R., Huang, L., Song, Y. and Regenstein, J. M. Characterization of Acidsoluble and Pepsin Solubilised Collagen From Jellyfish (*Cyanea Nozakii* Kishinouye). Food Chemistry, 150, 22-26.

ZETA POTENTIAL

- A sharp decreased of zeta potential of collagen was observed from pH 2 until it reached at pH 9
- This suggested that collagen jellyfish is not stable in alkaline solution.

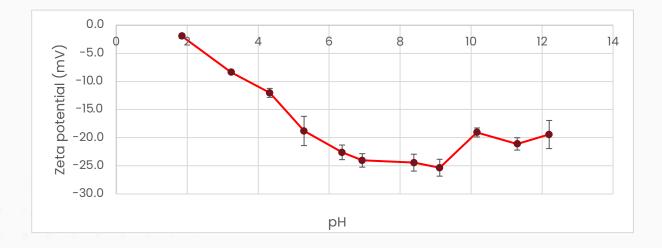


Figure 2 The Zeta potential of collagen jellyfish

SDS-PAGE ANALYSIS

 Collagen jellyfish consisted of α chain (a1) and ß chains (with molecular mass values of >240 and ~140 kDa, respectively, which referred to type II collagen

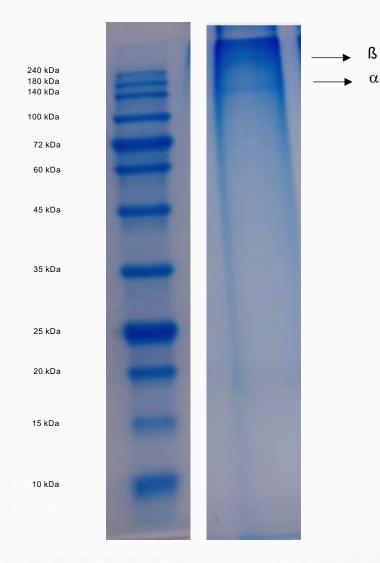


Figure 3 The SDS-PAGE analysis of collagen jellyfish

THERMAL STABILITY

• The thermal stability of jellyfish collagen,

Tmax = 32.11 °C , Δ H = 34.25 J/g

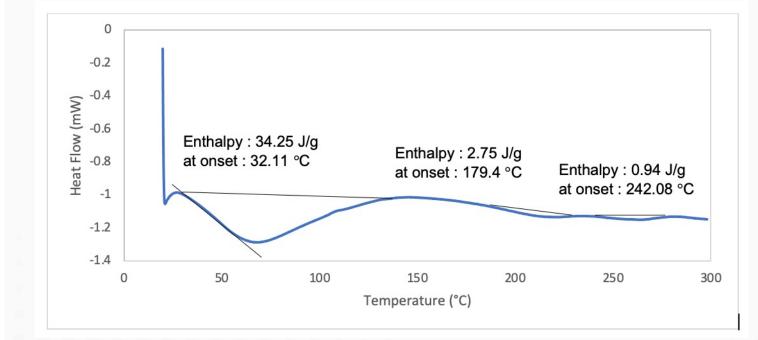


Figure 4 DSC thermogram of collagen jellyfish

AMINO ACID PROFILING

 Glycine (Gly) was the major amino acid in jellyfish collagen with 15/100 residues. This result is in the good agreement with the basic structure of collagen which consists of Gly-X-Y amino acid model in which Gly is the highest content of amino acid in collagen jellyfish

Amino Acid Compound	Compound content (%)
Hydroxyproline	5.966
Aspartic Acid	9.989
Serine	3.473
Glutamic Acid	13.787
Glycine	15.940
Histidine	0.956
Arginine	7.794
Threonine	3.430
Alanine	7.627
Proline	7.337
Cysteine	2.199
Tyrosine	1.688
Valine	3.814
Methionine	1.657
Lysine	5.409
Isoleucine	3.035
Leucine	4.077
Phenylalanine	1.820
Total Amount Amino Acid	100.000

Table 1 Amino acid analysis of collagen jellyfish

CONCLUSIONS


- Acid soluble collagen was successfully extracted from the commercial jellyfish with a **maximum yield of 20%** (wet weight).
- The structure of the jellyfish collagen shows five important band of collagen which are **Amide A**, **Amide B**, **Amide I**, **Amide II and Amide III**.
- The zeta potential of the jellyfish collagen was **stable up to pH 9**, after pH 9 the collagen starts to decompose.
- The amino acid composition of the jellyfish collagen shows the similar pattern with the standard **type II collagen** from chicken feet.
- The thermal stability of the jellyfish collagen (T_{max} = 32.11 °C) was in range of other marine sources of collagen
- The findings indicted that this jellyfish species may be a valuable source of type II collagen that can be used as an **alternative to land-based sources**.

Marine collagen: A promising source for safer and sustainable cosmetic ingredients

Dr Nur Izyan Wan Azelee **PROJECT LEADER** (Downstream process: Extraction & Optimization)

Dr Norhayati Mohamed Noor **RESEARCH OFFICER** (Downstream process: Extraction & Formulation)

Assoc Prof Dr BA Venmathi Maran Dr Siti Zulaiha Hanapi **COLLABORATOR (UMS) RESEARCH ASSOCIATE** (Upstream process: Jellyfish preparation & toxicity analysis) (Downstream process: Extraction) (Uppstream & Downstream

Dr Siti Maryam Jasman **RESEARCH ASSISTANT** process: Extraction &

Prof. Dr Hesham Al-Enshasy **PROJECT MEMBER** (Downstream process: Extraction)

Ms Zaitul Iffa Abd Rasit **RESEARCH OFFICER** (Downstream process: Extraction)

Dr Nor Hasmaliana Abdul Manas **PROJECT MEMBER** (Upstream process: Analysis & Characterization)

Ms Azizah Ishak LAB ASSISTANT (Downstream process: Formulation)